• Menu
  • Skip to primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Skip to primary sidebar

Green Energy Chronicles

What you should know about alternative energy.

  • Home
  • Wind
  • Solar
  • Hydro
  • Environment
  • Terms of Use
  • Privacy Policy
  • Solar
  • Environment
  • Wind
  • Hydro
  • Home
  • Wind
  • Solar
  • Hydro
  • Environment

The New Colors Of Solar Energy

June 7, 2017 //  by Timothy E.

(www.seas.yale.edu)

The technology of solar energy has progressed dramatically in the last few decades, as it operates with increasing efficiency and at lower costs.

But the matter of how solar panels look remains an obstacle. Most photovoltaic panels are blue or black and cover large portions of buildings with a monotone hue. That might not jibe with your personal taste – or that of your homeowners’ association. It’s a limitation that has hindered the integration of solar energy into some commercial applications. In fact, architects and designers have long requested a wider choice of colors for solar cells to allow them to seamlessly blend into a building’s façade or an electronic system.

Up to now, however, expanding the palette of colors that solar energy engineers can work with has proven notoriously difficult. That could be changing, though, with work from the lab of Andre Taylor, associate professor of chemical & environmental engineering. Researchers there have developed a solar cell that widens the choice of colors without decreasing its power conversion efficiency. Their findings are published in Nano Energy.

Researchers have previously tried a few methods to vary the colors of solar panels. One approach involved adjusting a layer of the solar cell so that it would reflect different colors – this has proved to be costly and with limited results, however. Another method introduced what’s known as a “dye molecule” to allow for more colors. This approach, however, diminishes the efficiency at which the system converts sunlight to energy.

The research team in Taylor’s Transformative Materials and Devices Lab also used a dye molecule, but this one doesn’t diminish the power conversion efficiency. Jaemin Kong, a post-doctoral associate and lead author of the paper, explains that this is because the molecule – a squaraine known as ASSQ – acts not only as a color agent, but as an energy transfer donor. It works in conjunction with two polymers – one that serves as an electron donor and the other as a non-fullerene electron acceptor. By changing the ratios of those three elements, the researchers were able to make adjustments that allowed for a gradual color variation from blue-green to purple-red.

“I think that’s a pretty impressive part of this paper – there was no major sacrifice of the power conversion efficiency,” Taylor said. “And the nice thing about this is that the dye can be used at low concentrations, so it doesn’t necessarily affect the overall mechanism.”

Category: Solar

Previous Post: « Solar Power Has Finally Proven That It’s The Energy Source of the Future
Next Post: In Germany, solar panels are transforming home life and offering energy independence »

Primary Sidebar

Categories

  • Environment
  • Hydro
  • Solar
  • Uncategorized
  • Wind

Featured Posts

My Solar Home

Middle-Class Families Are Set To Receive Solar Panels With No Upfront Costs In The U.S.

April 28, 2019 By //  by Timothy E.

Nearly 300 low-income D.C. residents to get solar panels on their homes

July 28, 2017 By //  by Timothy E.

Asian Development Bank Invests $57.7 Million To Develop Renewable Energy In Southeast Asia

July 20, 2017 By //  by Timothy E.

Richard Branson: Give Coal Miners Clean Energy Jobs

July 20, 2017 By //  by Timothy E.

Chinese province runs on 100% renewable energy for a week to test whether grid can cope

July 19, 2017 By //  by Timothy E.

  • Terms of Use
  • Privacy Policy
  • Solar
  • Environment
  • Wind
  • Hydro

Copyright © 2021