Geothermal energy from old mines could heat Llynfi Valley homes

Posted on January 19th, 2017 in environment by Spencer R.



Llynfi Valley residents are being invited to find out more about an exciting project which is investigating whether heat could be taken from underground mine water to provide energy for nearly 1,000 homes.

The plan is being developed by Bridgend County Borough Council (BCBC), and two public exhibitions will be held next month.

Former mine workings in the valley may potentially offer a geo-thermal source of energy as they have filled up with water which has an average temperature of around 10 to 14 degrees Celsius.

The idea is to pump the water from the old disused mine workings and transport it through a network of pipes to residents’ properties in Caerau where the heat will be extracted and passed through a heat pump, which will then provide heat for the property using its existing radiator system. The mine water would not, at any point, enter the homes of residents.

The following public exhibitions have been arranged, and local people are invited to drop in at any time to find out more:


Monday, February 13: Noddfa Chapel Community Centre, Caerau Road, Maesteg, (CF34 0PG), 3pm–8pm; Wednesday, February 15: Caerau Development Trust, Woodland Terrace, Maesteg (CF34 0SR), 11am–4pm.

Coun Ceri Reeves, the council’s cabinet member for communities, said: “I am pleased to see that this innovative project is progressing and that Caerau residents will soon be able to learn more about this exciting cutting edge opportunity to develop alternative heat.

“The council has commissioned a detailed ground condition survey to ascertain whether the water held in the mine workings under Caerau provides a natural heat source which could provide safe, continuous, and cost effective heat for a large number of local homes.

“I am watching the development of this renewable energy project with great interest as its potential to make a positive impact in the Llynfi Valley is huge.”

In March 2016, BCBC was one of 24 local authorities – and the only one in Wales – to share a grant of £1.5m from the Department of Energy and Climate Change for the development of new low carbon heat networks.

Heat networks are believed to have the potential to supply heat for between 14 per cent and 43 per cent of UK buildings by 2050. The Department of Energy and Climate Change has been providing grant funding and expert guidance to support 190 heat network projects since 2013.

Coun Reeves added: “We’re proud to be among those testing the large scale viability of using these low carbon heat sources and developing a model that could be rolled out in the rest of the UK.”

As well as being invited to attend the public exhibitions, Caerau residents can also express an interest in helping to develop the project by getting involved with important research activities such as testing new technologies in their homes, and taking part in detailed energy assessments.

If you would be interested in getting involved, contact BCBC’s Sustainable Development Team on 01656 643133 and ask to speak to Ceri Williams or Michael Jenkins.

Residents who take part will be offered financial reimbursement for their time and to cover any increased fuel costs. Anyone who lives in a rented property will need permission from their landlord.



Poland turns to geothermal solution for air quality

Posted on January 19th, 2017 in environment by Spencer R.



The Polish government is to use geothermal energy to try and clean up its air quality problem.

Both Warsaw and the EU are to help fund a $2.4bn programme to tackle the problem and $120m is to be designated towards geothermal energy projects.

Dr Kazimierz Kujda, CEO of the National Fund said, “Improving air quality is, has been and will be one of the priorities of the National Fund, but achieving this requires above all coordinated action at the local government level.”

The prerequisite for financing individual projects is documented ability to receive thermal energy (including the ability to connect the source to the existing district heating network). This offer does not apply to recreational use of geothermal waters or spas.



Why more and more countries are taking an interest in geothermal energy

Posted on January 17th, 2017 in environment by Spencer R.



At 2:46 pm local time on Friday, March 11, 2011, Japan was rocked by the largest earthquake ever to strike its shores. The 9.1-magnitude quake triggered a devastating tsunami that killed more than 15,000 people. It also took out the backup emergency generators that cooled the reactors at the Fukushima Daiichi nuclear power plant complex, causing a series of catastrophic meltdowns.

But amid the chaos, the Yanaizu-Nishiyama geothermal power plant in Fukushima prefecture didn’t miss a beat. Along with two more of the nine geothermal power plants in the region, the 65-megawatt facility continued to generate power, even as many other power plants around them failed because of damaged equipment and transmission lines.

“This is big news for many geothermal people around the world,” says Kasumi Yasukawa, principal research manager at the Institute for Geo-Resources and Environment in Japan’s National Institute of Advanced Industrial Science and Technology.

In a country as seismically active as Japan, it was a clear signal that geothermal energy was worth investing in.


Geothermal electricity generation might not have the high-tech flashiness of solar, or the romance of wind and wave, but it’s the solid, steady workhorse of the renewable energy race. The never-flagging heat lurking at various depths below the Earth’s surface is tapped to produce steam that is used to drive turbines and generate electricity. This heat can also be used more directly to warm spaces or swimming pools, but sustainable electricity generation is the goal that most have in their sights.

“If you want to know what you could run an industrial society off of, it would be hydro and as much geothermal as you could find,” says Susan Krumdieck, who heads the Advanced Energy and Material Systems Lab at the University of Canterbury in New Zealand.

Star on the rise

Wind and solar energy have many excellent qualities, but reliability isn’t necessarily one of them. When the wind drops off, or the sun sets, something else has to step in. And increasingly, nations are turning to geothermal to deliver that stability.

The use of geothermal electricity varies enormously around the world. In 2015, 24 countries had a total of around 13.3 gigawatts of geothermal power capacity. The United States is the single biggest, with just over 3,500 megawatts of capacity — although this only contributes around 0.3 percent of the nation’s electricity capacity — followed by the Philippines, Indonesia and Mexico in the 1,000 to 2,000 MW range.


Geothermal energy’s star seems to be on the rise. The Japanese government has committed to tripling its geothermal electricity capacity, from around 540 MW in 2011 to 1,500 MW, by 2030. El Salvador is aiming to source 40 percent of its electricity from geothermal by 2019 — up from around 25 percent — and in Kenya, geothermal energy has now taken over hydro as the top supplier of electricity, providing 51 percent of the nation’s electricity.

But these countries, and others such as Iceland and New Zealand, have one big advantage: Their volcanic geology and seismic activity means the heat is relatively close to the surface and often in close contact with water, and therefore much easier to tap. But not all countries are so lucky, and this is where enhanced geothermal electricity comes into play.

Enhanced geothermal

Geothermal electricity generation needs three things to be viable: heat, fluid, and a substrate permeable enough to allow movement of fluid through it and up to the surface, where the steam is used to turn power-producing turbines. In the case of conventional geothermal energy — sometimes called hydrothermal energy — all three of these elements naturally occur together.

However this is the exception rather the rule. For the majority of countries, the heat is there, but the fluid, and in some cases the permeability, is not.

Enhanced geothermal involves drilling wells into the hot rock, and forcing fluid — water or brine — into the hot rock through fractures or permeable areas. The heated water is then extracted via another well and put to work generating electricity.

“The hydrothermal systems that have been developed to date are by and large low-hanging fruit,” says Robert Podgorney, director of the Snake River Plain Geothermal Consortiumand Idaho National Lab FORGE — Frontier Observatory for Research in Geothermal Energy — Initiative. “But the elephant in the room is the enhanced geothermal; the source base dwarfs all of production to date.” For example, a 2008 report by the US Geological Survey estimated there are more than 500,000 MW of untapped enhanced geothermal energy in the western United States alone, an order of magnitude greater than available conventional geothermal resources. FORGE is the US government’s up to US$31 million push to shift enhanced geothermal electricity generation up a gear.

“We’re looking for case number one at a really commercial scale, and when I say commercial scale, each well has to be making at least 5 megawatts and preferably more,” Podgorney says.

But getting to this point will require advances in drilling technologies, energy conversion, understanding the heat resource and substrate, and identifying resources most likely to deliver electricity bang for drilling buck. Enhanced geothermal also has issues with regional seismic disturbances, subsidence, and the extraction of potentially toxic mineral-laden fluid that can clog power plant machinery with mineral deposits.

For example, in 2009 the ancient Swiss city of Basel was hit by a series of small earthquakes that were blamed on an inadequately researched enhanced geothermal power plant initiative. The project was soon abandoned, and its geologist stood trial accused of property damage, although he was later acquitted. Podgorney says seismic disturbance can be a concern, particularly with enhanced geothermal where fluid is being forced into the substrate. “One of the areas that we work on here in the Idaho National Lab is ways to optimize the reservoir creation while trying to minimize any potential impacts.”

Conventional geothermal is not without its environmental problems: New Zealand has experienced subsidence around several of its geothermal fields, which has been partly blamed on unconstrained extraction of the hot fluid without reinjection. Plans for these areas now emphasize reinjection to limit further losses.

But the biggest challenge for enhanced geothermal is the fact that getting to this hot rock requires drilling many kilometers below the surface, injecting fluid and extracting it once it’s hot, none of which is cheap.

Indeed, cost has proven Australia’s undoing. While the ancient continent’s volcanic resources are long dormant, there are vast reserves of hot dry rock. But a AU$144 million project drilling for enhanced geothermal energy resources in the Cooper Basin did not find a resource worth developing under existing economic conditions. The Australian government’s renewable energy agency has now taken a step back and directed its funding to a project to map structural permeability and identify areas where fluid has the best chance of traveling efficiently through the hot rock.

Improving efficiency

The US-based geothermal company AltaRock Energy is focusing considerable attention on energy conversion efficiency. By making a number of tweaks to its own geothermal power plant, AltaRock has increased the efficiency with which it converts heat to electricity and increased output from 25 MW to 30.

“If you can make the conversion process from heat to electricity 20 percent more efficient, you need 20 percent fewer wells, and the wells are the expensive part,” says Susan Petty, AltaRock’s president and CTO.

AltaRock is also improving the efficiency of its wells — managing the injection and flow of fluid so they target the hottest parts of the geothermal field. And Petty sees potential in improving the design of the giant turbines whose steam-powered spin drives electricity production, using modern, digitally controlled techniques to craft much more efficient turbines.

Meanwhile, back in Japan, some people are turning geothermal into personal gain. The expansion of geothermal electricity generation faces resistance from some owners of Japan’s many traditional hot springs, or onsen — an integral part of Japanese culture — who are afraid the development will compromise their springs in some way. But others have begun investing in their own very small-scale geothermal power plants, suggesting that geothermal has already gone a long way to winning them over after the Fukushima nuclear disaster.

Yasukawa says the 2011 earthquake and tsunami showed just how valuable geothermal electricity can be.

“We don’t need to wait for the big catastrophic earthquake — we have lots of small earthquake or landslides or something that interrupts the power lines in these areas,” Yasukawa says. “If you have a geothermal power plant in your village you can get power, so I think that is a very strong support of geothermal.”


Military Urges Renewed Commitment to Renewable Energy

Posted on January 17th, 2017 in environment by Spencer R.



 On January 12, 2017, Noblis, in partnership with the Pew Charitable Trusts, released a report on energy assurance on U.S. military bases. Cost-effective and reliable energy is crucial to the success of U.S. military missions, and the Department of Defense’s (DoD) fixed military installations account for 1 percent of the total electrical energy consumed by the United States, costing almost $4 billion. The military has long relied on the commercial grid, with standalone generators during peak use, but these sources are vulnerable to disruption due to aging infrastructure, severe weather, and both physical attacks and cyberattacks. Instead, the report proposes shifting to a strategy of large-scale microgrids. It conducts a cost comparison, addresses implementation issues, and analyzes the efficiency and security of microgrids, concluding that they would be superior to the military’s current system for supplying energy.

The Pew Charitable Trusts recently held a panel discussion, which supplements the report’s findings, focused on the intersection of national security, energy, and climate change. Three military secretaries examined past successes, and Dr. Jeff Marqusee, the Chief Scientist of Noblis and author of the report, discussed how the military could enhance its energy security going forward. The panelists argued that investment in renewable energy should continue to be a priority for the U.S. military because its goal is increasing mission assurance. The testimony was followed by a roundtable discussion and Q&A session.

Assistant Secretary of the Army Katherine Hammack discussed the Army’s Net Zero programs initiative, the goal of which is to maintain bases with net zero energy, water, and waste. This requires that bases produce as much as they consume, so consumption must also be reduced. The Net Zero programs strategy is based on enhancing readiness and resilience to weather emergencies or attacks. Addressing concerns that the Trump administration may reduce renewable energy initiatives in the federal government, Secretary Hammack stated that she does not believe the program will be scaled back, because it is objectively cost-effective, and it would be counterintuitive to require the Army to switch to a less cost-effective and less resilient system.

Assistant Secretary of the Navy Dennis McGinn argued that the military needs to focus on regional resiliency, because if the lights stay on in the region, they will stay on in the base. To accomplish grid stability, the Navy works closely with private-sector utility partners. If a private company wants to build an element of the energy grid or a “peaker plant” on a marine installation, the Navy allows the company to use the land and this, in turn, improves regional and base resiliency. Secretary McGinn stressed the strong business case for energy stability and efficiency, since energy security and resiliency is directly related to the success and safety of our troops.

Assistant Secretary of the Air Force Miranda Ballentine discussed three recent global trends that leave the U.S. energy supply uniquely vulnerable. First, the United States systematically and intentionally outsources power generation. Second, U.S. military missions have become more and more dependent on the steady flow of electrons, which are as essential as jet fuel to planes. Third, Mother Nature is no longer our only adversary; the United States has many adversaries around the world looking at our power grids for kinetic and cyberattacks.

These trends signal a need to change the military’s approach to energy security. Secretary Ballentine suggested that the military needs renewable energy that does not rely on a supply chain, because terrorists cannot cut off sun, wind, or geothermal energy if it is right underneath the base. There is also the need to improve next-generation storage technology, so bases can function without immediate sun and wind. She also pointed out that many nations are transitioning to host nation power grids, and away from diesel generators, because they believe host nation power grids are less expensive and more reliable.

Chief Scientist of Noblis Dr. Jeff Marqusee advocated for a shift from the current dependency on the commercial grid to microgrids. There has been an increase in grid outages due to weather events, physical attacks, and cyberattacks, but microgrids are a networked approach that provides an added layer of resiliency, increased business performance, and efficiency. Microgrids also provide a huge cost savings over the current system, because we do not account for all of the costs of our current paradigm, creating strong inertia. Dr. Marqusee believes that DoD should buy microgrid services from a third party, because that allows it to tap into third-party financing. His report finds that with a switch to microgrids, DoD’s buildings could become a quarter more efficient.

Finally, each panelist was asked to provide a piece of advice for the incoming Trump administration. Secretaries Hammack and McGinn urged the new administration to focus on the “why,” which is mission effectiveness and resiliency, and to examine the strong business case that underlies sustainable energy. Secretary Ballentine and Dr. Marqusee focused on the “people power” in the DoD, the extensive expertise of career employees, and the need to trust the employees, because all share a common goal of supporting the mission.


Renewable Energy First, Renewable Electronics Follow

Posted on January 17th, 2017 in environment by Spencer R.



Much of the focus regarding the fight for environmentally friendly technology revolves around renewable energy, forgetting that there are also other facets of modern industries that cause harm. Electronics are prime examples since components, wires, and hardware is still contributing to the deteriorating state of the earth. Scientists recently found a type of microbe with significant potential in conducting electricity, which could potentially become the future’s source of wires.

Electrically conductive wires, whether they are based on copper or optic fibers, are necessary to transport and store energy produced by one source from another. According to a new report by University of Massachusetts Amherst microbiologists, this conductivity could potentially come from microbes that belong to the Geobacter species, reports.

One of the microbiologists behind the report is Derek Lovley, and according to him, the use of microbial nanowires has the potential to become even better conductors of electricity than those made by humans. For one thing, the process to actually getting them is a lot cleaner.

"Microbial nanowires are a revolutionary electronic material with substantial advantages over man-made materials,” Lovley said. “Chemically synthesizing nanowires in the lab requires toxic chemicals, high temperatures and/or expensive metals. The energy requirements are enormous. By contrast, natural microbial nanowires can be mass-produced at room temperature from inexpensive renewable feedstocks in bioreactors with much lower energy inputs. And the final product is free of toxic components."

This led Lovley and his team to conclude that microbial nanowires have the potential to become the source for developing materials for electronic devices such as sensors, computer chips, and eventually, perhaps even vehicles. The diversity of the applications that can come from the discovery were outlined in the paper that the team published.

In the paper, the microbiologists suggest that the sustainable nature of producing these electrically conductive nanowires makes them perfect for replacing current versions that are causing harm to the planet. Doing so might even lead to a change in perspective when it comes to creating sustainable and non-toxic substitutes for other materials.


Why the U.S. Air Force wants to fly on renewable energy

Posted on January 16th, 2017 in environment by Spencer R.



In 2012, Hurricane Sandy devastated much of the Northeast, including the area surrounding Joint Base McGuire Dix Lakehurst (JB MDL) in New Jersey. JB MDL played a critical role in the relief and recovery from Sandy. The sprawling base, including what used to be known as McGuire Air Force Base, provided essential support as a staging area for relief efforts and aid distribution for more than 100 nonprofits and government agencies, including FEMA, the Army Corps of Engineers and the Department of Homeland Security.

"They were the central node for receiving aid and stationing for deployment," observed Michael Wu, special assistant, Office of the Assistant Secretary of the Air Force for Installations, Environment and Energy, "but the reason they were able to do that is because the storm just missed them. If the storm had been a little bit farther south, they would have been knocked out like everybody else."

The experience of Sandy vividly demonstrated the crucial role that energy resilience plays in mission assurance for the Air Force. And so Wu, together with a team drawn from Air Force headquarters in the Pentagon, JB MDL and the National Renewable Energy Laboratory (NREL), joined teams from across North America at RMI’s third annual eLab Accelerator to investigate clean energy approaches to resilience.

A brave new world

The Air Force team came to Accelerator with the goal of honing "a replicable and scalable process for implementing resilient energy projects and resilient energy systems throughout the Air Force enterprise," said Wu. "Climate change could create significant challenges to readiness, and is already having an impact on our installations and will impact our ability to operate going forward." 

Threats from more frequent and more intense storms are on the minds of all enterprises. Indeed, the White House’s recent memorandum Climate Change and National Security calls out climate change as “a significant and growing threat to national security, both at home and abroad,” and directs all federal entities to "ensure that climate change-related impacts are fully considered in the development of national security doctrine, policies, and plans."

Wu, providing an example for the Air Force, noted, "The energy resilience tools that we’ve used have been mostly spot-diesel generation on our critical facilities." But diesel fuel runs out and can be hard to resupply, especially in the midst of widespread disruption. Wu believes "that we’re entering a new threat environment, where there’s a much greater concern over long-term, widespread power outages.” 

The Air Force, being a military service, also has its eye on a somewhat more colorful set of threats beyond just climate change. Wu explained: "The driving factor for a lot of our new initiatives has really been the determined-adversary aspect of it." For example, our increasingly interconnected world is also increasingly susceptible to sabotage, as revealed when someone armed with only bolt cutters and a rifle shot up an electrical substation in Silicon Valley in April 2013, doing $15 million worth of damage that took 27 days to repair. PG&E was able to compensate using other grid resources, but it put the world on notice that grids are physically vulnerable. 

Think globally, act locally

Sandy provided JB MDL the impetus to implement localized clean energy technologies and approaches. "They really wanted to create more self-sufficiency and resiliency for themselves and their mission partners on the base," said Wu. The solution that JB MDL is finalizing is one that includes energy storage, controllable loads and "high renewable energy penetration, because that will strengthen our ability to maintain our missions in one of those prolonged power disruption scenarios," said Wu.

But the team that came to Accelerator ultimately had their eye on innovating solutions for all U.S. bases, not just JB MDL, and on ensuring resilience in the face of any disruption, not just weather-related natural disasters. In Wu’s words, "How do we create a process that we can learn from, replicate and scale? How do we do it in such a way that it’s helpful for JB MDL, but it’s also something that we can apply across the Air Force enterprise?" Rather than have an architecture and engineering firm take on the resiliency project at JB MDL, the team "did a really good job of sitting down and trying to do some long-term visioning and strategic thinking," said Wu.

"It was exciting to work with a team that had such diverse perspectives on resilience for mission assurance," said Jason Meyer, RMI facilitator for the Air Force team at Accelerator. "The application insight from folks at JB MDL, the enterprise strategy from Air Force headquarters [HQ AF], the experience of NREL across a number of similar projects and efforts and the technical knowledge of O’Brien & Gere [contractor to JB MDL] really advanced the development of immediate solutions for JB MDL, with an eye toward application across the Air Force."

JB MDL is an excellent model from which to scale up. Wu said, "There are so many stakeholders just within the base and within HQ AF, and it’s a joint base that includes all four services," that it was valuable to create a process for stakeholder engagement there. The team also has ideas about how to pursue opportunities with the local grid operator, PJM and the local utility, Jersey City Power & Light. 

Lessons from — and for — the private sector

The problems and opportunities that Air Force installations face regarding resilience are faced by just about every large organization you could imagine. Many such organizations had teams at Accelerator. Wu said, "The space that they had, and the faculty and other teams that were doing similar projects, really made the difference at Accelerator." He said their team learned a lot from "how much other teams were struggling and wrestling with the same questions: How do we pay for this stuff? What’s the value of resilience? How do we do this in the regular course of business, and not just for the pilot project?" 

"We share a lot of energy resilience requirements with other sectors — with the financial systems sector, with cities," said Wu. "Our missions are a little different, but the energy resilience side is actually remarkably similar ... Those kinds of folks will hopefully be helping to push the technologies and the market factors in the same direction. What I think is critical is to recognize the common requirements." Wu said he thinks "it will help create more standardized business models that allow more expansion and, hopefully, a self-perpetuating cycle of enhancements and improvements to the way we create resilient energy systems." 

"Resilience and resilient energy systems are critical concerns for many different types of stakeholders," concluded Meyer. "The complexity of the need — which could range from mission assurance to sheltering in place or continued operations of critical facilities in times of disaster — is compounded by the complexity and newness of the technology that could provide solutions." Accelerator is "such a powerful forum to work through these challenges due to the diversity of stakeholders and faculty members in the room that can lend a hand in the development of a solution," Meyer said.

Mission ready air force

"Every mission expansion or shift or new technology that the Air Force has implemented in the last three decades has increased the importance and prominence of access to electricity for our installations," Wu summarized. "The expansion of our cyber mission, the expansion of our space mission, the proliferation of remotely piloted aircraft and other new platforms — all of them are more networked, and that creates new interdependencies."


As electricity has become more critical to the Air Force, so has resilience, whether the mission is providing local relief during disasters, air support for forces across the globe or reliable communications via satellites in Earth’s orbit. That’s why the resilience inherent in on-site renewable energy generation and storage has such great potential to help ensure the Air Force is always ready, at home, on the other side of the world, and even in outer space. 


Saudi Arabia seeks $30bn-$50bn solar and wind energy investment

Posted on January 16th, 2017 in environment by Spencer R.



Saudi Arabia will “within weeks” start issuing tenders for a big solar and wind power programme that envisages investment worth $30bn-$50bn by 2030, the country’s oil minister said on Monday.

The oil-rich kingdom was also in the early stages of feasibility and design proposals for the country’s first commercial nuclear power stations, with capacity of 2.8 gigawatts, added Khalid al-Falih. “There will be significant investment in nuclear energy,” he said at a renewable energy event in Abu Dhabi. Mr Falih gave no further details on the programme’s timeframe and cost. The pledge marks the first solid indication of the kingdom’s commitment to developing nuclear energy, after it recently signed co-operation agreements with Russia, France and South Korea on feasibility work. Fleshing out his previously announced ambition to turn Saudi Arabia into a “solar powerhouse”, Mr Falih said that the country was targeting renewable power projects with a capacity of 10GW by 2023.

The pledge to invest heavily in broadening the energy mix builds on previous commitments to alternative power sources as part of Riyadh’s ambition to diversify the economy away from crude oil production by 2030. Its national development plan had earlier set a target of developing 3.45MW of renewable energy capacity by 2020. The broader economic reform plan aims to create new revenue streams to wean the government off dependence on oil. Energy forms a major component of the strategy, sparked by a fiscal crisis after two years of sustained low oil prices. The slump in oil revenues has prompted the government to draw down more than $100bn in financial reserves and borrow $17.5bn on global bond markets to help finance its budget. The government is also expected to cull billions of dollars’ worth of infrastructure projects to cut costs, and is set to return to bond markets this quarter.

Renewable and nuclear energy are seen as vital to cut domestic demand for oil, freeing up production for export. Mr Falih also said the kingdom would turn to natural gas as a feedstock for local electricity production. The government has pushed forward with cutting utility and petrol subsidies despite some disapproval from a population accustomed to a generous welfare state. The reforms are expected to save about $55bn a year by 2020. Speaking at another event in Abu Dhabi last week, Mr Falih said that earlier price rises had already produced a “significant drop” in demand growth from an average 5-6 per cent to 0.5 per cent last year. He also reaffirmed Riyadh’s commitment to privatisation as part of the economic reform push. The long-awaited initial public offering of a minority stake in state oil company Saudi Aramco — “the largest IPO in history” — was still scheduled for 2018, he said. The state-owned Saudi Electricity Company was also set to be split and sold off, he said. Mr Falih reiterated plans to privatise the stock market next year, adding that this could be followed by other sectors such as seaports and airports. Addressing last year’s Opec deal with non-Opec producers to trim output to sustain prices, Mr Falih said he doubted that the six-month agreement would need to be extended as demand would increase and the market would return to balance.


Smaller Businesses Want Renewable Energy Developers To Spread The Green

Posted on January 11th, 2017 in environment by Spencer R.



Smaller enterprises want energy developers to spread the green, allowing them to get in on the renewable wave rolling through America. The dynamic has made it easier for larger corporations with more demand to buy wind and solar electricity but it has nudged out the less brawnier brands.

The guys at Google and Facebook, for example, are stimulating the need for wind and solar energy that they are using to feed their electricity-starved data centers. The developers of those energy projects, in return, are getting solid customers that are buying their output at a fixed price over a certain period of years.

But individual commercial and industrial customers aren’t generating the type of demand that can propel big energy projects into the market. Now, though, that may change. The same so-called power purchase agreements that are used to attract the likes of Microsoft, Intel and SAP can also be parceled out to smaller businesses, albeit in much smaller blocks of energy and for much shorter time frames.


“We connect the corporate community to power purchase agreements,” says Paul Schuster managing director for Altenex, a unit of Edison Energy, in an interview. “We have noticed those larger-to-mid-sized energy users need to achieve cost efficiencies, which can be done by buying smaller blocks of renewable electricity.”


A traditional power purchase agreement, for example, might require a company to buy 100 megawatts and it would last 20 years. But the contract now offered to the smaller players might be for 10 megawatts over 10 years.

So how does all this work? A wind developer can’t go forward until it knows that it can sell its output into the market at a fair price. Because there are tax breaks for both building the project and buying the output, developers have proved able to sell that product into wholesale markets.

Let’s say it is an insurance company or a bank that buys the bulk of the wholesale power before it would be resold into retail markets: They often line up the major corporate outlets or Internet giants and contact with them to sell the energy at fixed prices over a set number of years. What Altenex is doing is going to that insurer or banker — in this example — and offering to market smaller blocks of electricity to commercial and industrial businesses.

“The return on equity should be infinite,” says Schuster. “Customers, in fact, are not putting down any upfront capital. Hopefully, they are buying renewable energy at the same cost or lower cost than they are paying for fossil energy.”

Is the corporate green market on fertile ground? PriceWaterhouseCoopers says that it has grown over the last 24 months and that it will continue to expand. Seventy-two percent of the companies it surveyed said that they are pursuing renewables, noting that they want to be more sustainable and to use green energy to hedge against volatile energy prices.

Green electricity sales in the form of voluntary power purchase agreements grew by 4% in 2015, adds the National Energy Renewable Laboratory. Contracted green power sales from those deals grew by 13% in 2015, it notes, and now total 10.2 million megawatt hours.

The larger companies are the main drivers with the likes of General Motors, Hewlett Packard, Johnson & Johnson, Tata Motors and Walmart setting a goal to run their entire operations using green energy. That includes a number of different options — everything from investing directly into deals to buying their electricity through power purchase agreements.

“The contracts are pretty favorable to the corporate buyers,” says Lori Bird, senior analyst for the National Energy Renewable Lab, in an interview. “Because companies are doing this, they are getting a credit and the energy is going into the grid. The companies are playing a vital role in driving renewable energy projects. Utilities have played that role and still do. But companies are now doing so with these financial arrangements.”

But the smaller businesses also want in on the action. Historically, such enterprises have bought so-called renewable energy credits that guarantee green energy gets generated and fed into the grid, she adds. But those purchases are nominal and have often been procured through their local utilities. 

More than 860 utilities offer green power programs to their customers, the renewable energy lab says, giving more than half of the electricity customers nationwide the option to buy renewable energy. But the aim now is to ratchet up the stakes and to offer commercial and industrial businesses a chance to contractually buy more green power.

“Until now, the market has only worked well for large companies willing to take large amounts of renewable energy on long-term contracts,” says Marty Spizer, with the World Wildlife Fund. “This promising market development could be really important to meet the needs of the critical middle-market segment that need easy, flexible, and cost-effective options.”

What it signals above all else is that the trend to go green is, in fact, a sustainable one and not a fad that will get ensnared by current political happenings. Indeed, big businesses started the momentum and the smaller ones now have the potential to carry it forward.


Obama: Renewable Energy Revolution Is 'Irreversible', Will Outlast Trump

Posted on January 11th, 2017 in environment by Spencer R.



Barack Obama, outgoing president of the U.S., has stepped directly into the climate debate. He believes that the U.S. is on the way to a "clean energy" world and he delivers four reasons why he thinks the shift is now irreversible.

In an article for the journal Science, President Obama said that although the understanding of the impact of climate change is increasingly and disturbingly clear, "There is still debate about the proper course for U.S. policy—a debate that is very much on display during the current presidential transition."

That is almost his only acknowledgment of President-elect Donald Trump's declared belief that climate change is a hoax, invented by the Chinese.

Clean Energy Economy

"But putting near-term politics aside," he wrote, "the mounting economic and scientific evidence leave me confident that trends toward a clean energy economy that have emerged during my presidency will continue and that the economic opportunity for our country to harness that trend will only grow."

First of these is that between 2008 and 2015, the U.S. economy grew by 10 percent while carbon dioxide emissions from the energy sector fell by 9.5 percent, an outcome that "should put to rest the argument that combating climate change requires accepting lower growth or a lower standard of living."

Renewable energy costs fell dramatically during his years in office: 41 percent for wind, 54 percent for rooftop solar photovoltaics and 64 percent for big solar-power installations. Clean energy now attracts twice as much global capital as fossil fuels.

President Obama also believes that businesses now understand that reducing emissions works for the benefit of business—it cuts costs for consumers and delivers returns to shareholders.

It also matters to the workforce: 2.2 million Americans are now employed in the design, installation and manufacture of energy-efficiency products and services, while 1.1 million Americans are employed in producing fossil fuels and generating electric power with those fuels.

The power sector of the economy has changed too. It has shifted from coal to natural gas, largely because of market forces, and the drop in renewable electricity costs has prompted big businesses such as Google to promise that 100 percent of their energy will be from renewable sources in 2017.

Global Momentum

And, he argues, there is already global momentum. Nations in Paris in 2015 agreed on "smart" climate policies for all. It would undermine U.S. economic interests to walk away from the agreement.

"This should not be a partisan issue. It is good business and good economics to lead a technological revolution and define market trends," wrote President Obama.

"Despite the policy uncertainty that we face, I remain convinced that no country is better suited to confront the climate challenge and reap the benefits of a low-carbon future than the United States, and that continued participation in the Paris process will yield great benefit for the American people, as well as the international community."


China Aims to Spend at Least $360 Billion on Renewable Energy by 2020

Posted on January 10th, 2017 in environment by Spencer R.



China intends to spend more than $360 billion through 2020 on renewable power sources like solar and wind, the government’s energy agency said on Thursday.

The country’s National Energy Administration laid out a plan to dominate one of the world’s fastest-growing industries, just at a time when the United States is set to take the opposite tack as Donald J. Trump, a climate-change doubter, prepares to assume the presidency.

The agency said in a statement that China would create more than 13 million jobs in the renewable energy sector by 2020, curb the growth of greenhouse gasses that contribute to global warming and reduce the amount of soot that in recent days has blanketed Beijing and other Chinese cities in a noxious cloud of smog.

China surpassed the United States a decade ago as the world’s biggest emitter of greenhouse gasses, and now discharges about twice as much. For years, its oil and coal industries prospered under powerful political patrons and the growth-above-anything mantra of the ruling Communist Party.

The result was choking pollution and the growing recognition that China, many of whose biggest cities are on the coast, will be threatened by rising sea levels.

But even disregarding the threat of climate change, China’s announcement was a bold claim on leadership in the renewable energy industry, where Chinese companies, buoyed by a huge domestic market, are already among the world’s dominant players. Thanks in part to Chinese manufacturing, costs in the wind and solar industries are plummeting, making them increasingly competitive with power generation from fossil fuels like coal and natural gas.

Sam Geall, executive editor of Chinadialogue, an English- and Chinese-language website that focuses on the environment, said that the United States, by moving away from a focus on reducing carbon emissions, risked losing out to China in the race to lead the industry.

Mr. Trump has in the past called the theory of human-cased global warming a hoax and picked a fierce opponent of President Obama’s rules to reduce carbon emissions, Scott Pruitt, the Oklahoma attorney general, to lead the Environmental Protection Agency.

The investment commitment made by the Chinese, combined with Mr. Trump’s moves, means jobs that would have been created in the United States may instead go to Chinese workers.

Even the headline-grabbing numbers on total investment and job creation may understate what is already happening on the ground in China. Greenpeace estimates that China installed an average of more than one wind turbine every hour of every day in 2015, and covered the equivalent of one soccer field every hour with solar panels.

China may meet its 2020 goals for solar installation by 2018, said Lauri Myllyvirta, a research analyst at Greenpeace, who is based in Beijing.

But despite these impressive numbers, China’s push to clean its air and reduce its greenhouse gasses faces political pressure from the politically powerful coal industry.

Mr. Geall and Mr. Myllyvirta both said that Thursday’s announcement was missing any language on curtailment, or the amount of electricity generated by wind and solar that never finds its way to the country’s power grid. In China, wind power curtailment was 19 percent in the first nine months 2016, Mr. Myllyvirta said, many times higher than in the United States, where curtailment levels are often negligible.

The main reason for curtailment, he said, is that China is plagued by overcapacity in electricity generation and operators of China’s grid often favor electricity generated from coal.

In recent years the country has also been building coal-fired power plants at a furious pace, although that has recently slowed along with China’s economy. Another omission from Thursday’s announcements, Mr. Myllyvirta said, was the absence of any specific target to reduce coal consumption.

But both Mr. Geall and Mr. Myllyvirta said Thursday’s announcement set the stage for still more power generation from renewable energy and a gradual shift away from coal.

“My experience with China is when a numeric target gets written down, it gets implemented,” Mr. Myllyvirta said. “It doesn’t always get implemented in the way you like, but it does get implemented.”